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Universiẗatsstr. 1, D–56070 Koblenz/DE

Abstract

In this paper we present a definition ofPerformance Grammar (PG), a psycholinguistically
motivated syntax formalism, in declarative terms. PG aims not only at describing and ex-
plaining intuitive judgments and other data concerning the well–formedness of sentences
of a language, but also at contributing to accounts of syntactic processing phenomena ob-
servable in language comprehension and language production. We highlight two general
properties of human sentence generation, incrementality and late linearization, which make
special demands on the design of grammar formalisms claiming psychological plausibility.
In order to meet these demands, PG generates syntactic structures in a two-stage process.
In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mo-
biles’) are assembled out of lexical building blocks. The key operation at work here is typed
feature unification, which also delimits the positional options of the syntactic constituents
in terms of so-called topological features. The second, much simpler stage takes care of ar-
ranging the branches of the mobile from left to right by ‘reading–out’ one positional option
of every constituent.

In this paper we concentrate on the structure assembly formalism in PG’s hierarchical
component. We provide a declarative definition couched in an HPSG–style notation based
on typed feature unification. Our emphasis throughout is on linear order constraints.

1 Introduction

Performance Grammar (PG) is a psycholinguistically motivated grammar formal-
ism. It aims to describe and explain intuitive judgments and other data concerning
the well–formedness of sentences of a language, but at the same time it hopes to
contribute to accounts of syntactic processing phenomena observable during lan-
guage comprehension and language production. Due to space limitations, we can-
not detail the grammar design desiderata emerging from these phenomena. Here,
we highlight two sentence production characteristics:

(1) Late linearization: The linear order of constituents is realizedafter the hier-
archical (functional, grammatical) relations between them have been estab-
lished.

(2) Incrementality: Speakers often construct and deliver sentences in a piece-
meal fashion, risking premature utterance release and ‘talking themselves
into a corner’.
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The first desideratum derives from speech error phenomena discovered by Gar-
rett (1975). He identified two stages of syntactic processing in sentence genera-
tion: an early ‘functional’ and a later ‘positional’ stage. This distinction has since
been adopted by most students of language production (e.g., see Bock and Levelt,
1994). We follow Garrett’s lead by assuming that syntactic tree formation in PG
is a two–stage process. First, an unordered hierarchical structure (‘mobile’) is as-
sembled out of lexical building blocks. The key operation at work here is feature
unification, which also delimits the positionaloptionsof the syntactic constituents.
During the second stage, the branches of the mobile are arranged from left to right
by a ‘Read–out’ module that realizes one positional option of every constituent.

Incremental sentence production does not imply that thespatial(left–to–right)
order of the successive increments (sentence fragments, substrings) in a sentence
correlates perfectly with thetemporalorder in which these fragments have been
created and released into the output string. An obligatory constituent that is re-
leased later than, but needs a position before, a non-obligatory one may be skipped
inadvertently and receive an illegal output position. Consider, for instance, a
speaker who is grammatically encoding a finite adverbial subordinate clause and
intends to append it to the main clause. If, for whatever reason, the complemen-
tizer that should open the subclause takes more time to construct than subject NP
and finite verb, it will follow rather than precede the subject and verb in the out-
put string. Therefore, incremental generators need special precautions to prevent
constituents to be released prematurely. Grammar formalisms that, as required
by the first psycholinguistic property, separate hierarchical from positional com-
putations, typically use linear precedence (LP) rules to linearize the branches of
unordered trees. LP rules specify therelative positionof (pairs of) constituents
(cf. the ID/LP format in Generalized Phrase Structure Grammar (GPSG); see, e.g.,
Gazdaret al., 1985). However, a linearization method based exclusively on LP
rules cannot meet the requirements of incremental sentence generation. In terms
of the example, suppose the grammar uses LP rules such as “Complementizer<
Subject”, “Subject< Verb” and “Complementizer< Verb”. This allows subject
and verb to be ordered correctly when they are ready to be released and uttered
more or less simultaneously. But no warning is issued if the complementizer has
not yet been appended to the output string and runs the risk of being skipped or
misplaced. One possible solution to this problem is to supplement LP rules with
rules that somehow can reference the spatial layout of a constituent and assign
subconstituents toabsolute positionswithin this layout. For instance, suppose the
spatial layout of a subordinate clause would define a bank of ‘slots’ to be filled by
clause constituents. Then, a linearization constraint might stipulate that Slot #1 is
obligatorily occupied by one constituent, in particular by a complementizer. This
is the approach we have followed in our design of the PG formalism (cf. Kempen
and Hoenkamp, 1987, for an early implementation).

To prevent misunderstandings, we do not deny that people are liable to uttering
sentence fragments prematurely and, at times, do ‘talk themselves into a corner’.
But they do so much less frequently than expected on the basis of a generation
system without any provisions against premature utterance release.
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Although psycholinguists are primarily interested in processing phenomena,
that is, in theproceduralaspects of human syntactic processing, we considered
that, in order to enhance the comparability between PG and competing gram-
mar formalisms, adeclarativedefinition of Performance Grammar is desirable.
Here, we present such a definition couched in a notation based on typed feature
unification, as in Head–driven Phrase Structure Grammar (HPSG). Our emphasis
throughout is on linear order. In Section 2, we introduce PG’s elementary data
structures and structure assembly operations informally, using examples from En-
glish and Dutch. Section 3 is devoted to unification–based linearization. In Sec-
tion 4, Performance Grammar is compared to other linguistic formalisms from the
viewpoint of psychological plausibility. Section 5 contains evaluative comments
and conclusions.

2 Performance Grammmar: a procedural introduction
2.1 Basic assumption

Performance Grammar (PG) is a tree assembly system generating pairs consisting
of a hierarchy ofconceptson the one hand, and a string oflemmason the other. The
conceptual structure of an output pair represents the meaning of the lemma string.
A conceptual structure is a hierarchy of concepts connected bythematicrelations
(agent, recipient, theme), quantifier scope relations, etc. The individual lemmas
in output pairs are annotated by morphological diacritics (case, gender, number,
etc.) and map onto phonologically specified lexical items (lexemes). PG is fully
lexicalized, that is, the elements out of which the various structures are composed,
all originate from the lexicon; there are no rules that introduce additional elements.

The lexical entries used by the grammar are triples consisting of
(1) aconcept framecomprising a concept together with its thematic and other

relations; the concept represents the meaning of the entry;
(2) a lexical framespecifying the part–of–speech (word class) of a lemma and

its subcategorization information (grammatical functions fulfilled by con-
stituents, e.g., subject NP, head verb, modifier AP); the lemma itself func-
tions as the head of the frame and as the entry’s ID; and

(3) atopology, i.e., a fixed number of serial positions to be occupied by syntactic
constituents in the lexical frame.

The members of a triple are complex units themselves, and the individual compo-
nents of a member may be cross–linked to components of another member. For
instance, thematic relations of a concept frame map onto the grammatical func-
tions of a lexical frame, and vice–versa. This bidirectional mapping between com-
ponents of lexical and concept frames is specified by so–calledsynchronization
links. A topology is a one–dimensional array of slots. Each slot may serve as
the ‘landing site’ of one (sometimes more than one) syntactic constituent. This
mapping consists of bidirectionallinearization links.

The construction of the grammar’s output pairs proceeds in three steps.
(1) A hierarchy of lexical frames is assembled in parallel (in synchrony) with

a hierarchy of concept frames. The latter hierarchy is one member of the
output pair.
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(2) The hierarchy of lexical frames includes branches whose terminal node is a
lemma. These branches select a slot in one of the topologies accompanying
the lexical frames. This happens in preparation of the final word order.

(3) A Read–out module traverses the topologies depth–first from top to bottom
and from beginning to end, inspecting the linearization links deposited in the
slots. If such a link references a lemma, it is appended to the current output
string, together with its diacritics. Lemma strings delivered by the Read–out
module are the other members of the grammar’s output pairs.

The hierarchy of lexical frames emerging during the assembly process, i.e., an
unordered syntactic tree, we call theinternal structure of the utterance, in con-
trast with the two members of an output pair, which may be considered external
structures.

We now discuss the formation of internal structures and lemma strings in more
detail. Concept hierarchies will receive only cursory attention.

2.2 Hierarchical structure in PG

PG’s internal syntactic structures are unordered trees composed oflexical frames.
These are mobiles assembled from branches calledsegments. A segment consists
of three nodes: the root is a phrasal node (Sentence, Noun Phrase, Adjectival
Phrase, Prepositional Phrase); the foot node is categorial (i.e. phrasal or lexical);
the node in the middle isfunctional(that is, labeled by a grammatical function, e.g.
SUBJect, HeaD, MODifier). A lexical frame contains a fixed number of segments,
all with different functional nodes but with the same root node. The roots of these
segments are merged, giving rise to a tree with three layers of nodes. Exactly one
segment of a frame has a lexical foot node: this is the head segment, whose middle
node is labeled “HD”. Each lexical frame is ‘anchored’ to exactly one lexical item:
a lemma(printed below the lexical node serving as the frame’s HeaD). A lexical
frame encodes the word category (part of speech), subcategorization features, and
morphological diacritics (person, gender, case, etc.) of its lexical anchor (cf. the
elementary trees of Tree Adjoining Grammar (TAG; e.g. Joshi and Schabes, 1997).

All non–head segments have a phrasal foot node, which can be replaced (‘sub-
stituted for’) by a whole lexical frame.Substitutiongives rise to hierarchical struc-
tures comprising, in principle, any finite number of lexical frames (Figure 1). Sub-
stitution, PG’s sole composition operation, causes the foot node of one segment to
merge with the root of another segment (see the filled circles in Figure 1). Asso-
ciated with every categorial node (i.e., phrasal or lexical node) is afeature matrix,
that is, a set of attribute–value pairs. Whenever two nodes are merged, their fea-
ture matrices areunified. In accordance with standard definitions of unification
(for instance, see Sag and Wasow,1999), unification implies checking the compat-
ibility of feature values of the to–be–unified nodes (cf. agreement checks). If the
values do not match, unification fails. Hierarchical syntactic structures derived by
substitution are well–formed if and only if the phrasal foot nodes of all obligatory
segments of the lexical frames involved successfully unify with the root of another
frame. The hierarchy in Figure 1 is well–formed because the MODifier segments
are not obligatory.
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Figure 1: Lefthand panel: Simplified lexical frames underlying the sentencesWe know
Dana hates Kimand Kim we know Dana hates(example from Sag and Wasow, 1999).
Filled circles denote substitution and unification. (The feature matrices unified as part of
the substitution operations are not shown.)Righthand panel: Hierarchy resulting after uni-
fication (merger) of foot and root nodes during substitution. Segments (branches) with
phrasal leaves have been pruned. In both panels, order of segments is arbitrary.

2.3 Linear structure in PG

In order to assign a left–to–right order to the branches of hierarchical syntactic
structures, PG uses so–calledlinearization linksbetween categorial nodes in the
frame hierarchy and positions in atopology, that is, a one–dimensional array of
left–to–rightslots. In this paper we will only be concerned with linearization links
that assign a left–to–right order to the segments of verb frames (i.e., to the major
constituents of finite and non–finite clauses). We propose that topologies of En-
glish and Dutch clauses contain exactly nine slots. Table 1 shows the slot names
to be used in the topological features of the two target languages considered here.
The slots labeled Fi make up the Forefield (from Ger.Vorfeld); the Mj slots belong
to the Midfield (Mittelfeld); the Eks define the Endfield (Nachfeld; terms adapted
from traditional German grammar; cf. Kathol, 2000). Table 2 illustrates which
major clause constituents select which slot as their destination or ‘landing site‘.
Notice, in particular, that the placement conditions refer not only to the grammat-
ical function fulfilled by a constituent but also to its shape. E.g., while the Direct
OBJect takes M3 as its default landing site, it selects F1 if it is a Wh–phrase or
carries focus, and M2 if it is a personal pronoun (it). In terms of Figure 1, if
Kim carries focus, it will occupy slot F1 of the topology associated with the com-
plement clause headed byhates. In Section 3, we work out a formal method of
assigning syntactic constituents to topology slots that is based on typed feature
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unification.

Table 1: Slot labels in clausal topologies.

English F1 F2 F3 M1 M2 M3 M4 E1 E2
Dutch F1 M1 M2 M3 M4 M5 M6 E1 E2

Table 2: Examples of topology slot fillers in English. MODifier constituents are not shown.
Precedence between phrases landing in the same slot is marked by “<”.

Slot Filler
F1 (Declarative main clause: Topic or Focus) or

(Interrogative main clause: Wh–constituent) or
(Complement clause: Wh–constituent)—at most one constituent in F1

F2 Complement clause: CoMPLementizeRthat
F3 SUBJect (if non–Wh)
M1 Pre–INFinitiveto < HeaD verb (oblig.)< PaRTicle
M2 (Interrogative main clause: SUBJect (if non–Wh))< (Direct OBJect

(if personal pronoun))
M3 Indirect OBJect< (Direct OBJect (non–Wh))
M4 PaRTicle
E1 Non–finite Complement of ‘Verb Raiser’ (usually an Auxiliary)
E2 Non–finite Complement of ‘VP Extra–position’ verb or

Finite Complement clause

How is the focussed Direct OBJect NPKim ‘extracted’ from the subordinate
clause and ‘moved’ into the main clause? Movement of phrases between clauses
is due tolateral topology sharing(i.e. left– and/orright–peripheralsharing). If a
sentence contains more than one verb, each of the verb frames concerned instanti-
ates its own topology. This applies to verbs of any type, whether main, auxiliary
or copula. In such cases, the topologies are allowed toshareidentically labeled
lateral slots, conditionally upon several restrictions to be explained shortly.After
two slots have been shared, they are no longer distinguishable; in fact, they are
the same object. In the example of Figure 1, the embedded topology shares its F1
slot with the F1 slot of the matrix clause. This is indicated by the dashed borders
of the bottom F1 slot:

F1 F2 F3 M1 M2 M3 M4 E1 E2

• we know •
Kim Dana hates
↑ ⇑

Sharing F1 effectively causes the embedded focussed Direct ObjectKim to
move into slot F1 of the matrix, and thereby to open the sentence (black dot in F1
above the single arrow). The dot in E2 above the double arrow marks the position
selected by the complement clause (or, rather, the root S–node of that clause). In
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order to avoid confusion with current terminology, we use the termpromotionto
denote the upward movement caused by lateral topology sharing.

The overt surface order is determined by aRead–out modulethat traverses the
hierarchy of topologies in a left–to–right, depth–first manner. Any lexical item it
‘sees’ in a slot is appended to the output string and tagged as already processed.
E.g., the Read–out module detectsKim while scanning the matrix topology and
skips this NP during its traversal of the embedded topology. See Figure 2 for the
ordered tree corresponding toKim we know Dana hates.
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Figure 2: Fronting of Direct Object NPKim due to promotion (cf. Figure 1).

The number of lateral slots an embedded topology shares with its upstairs
neighbor is determined by the parametersLS (left–peripherally shared area) and
RS(right–hand share). The two laterally shared areas are separated by a non–
shared central area. The latter includes the slot occupied by the HeaD of the lex-
ical frame (i.e., the verb in case of a verb frame) and possibly additional slots.
The language–specific parametersLS andRSare defined in the lexical entries of
complement–taking verbs, and dictate how the topology associated with the foot
of S–CMP–S segments gets instantiated. For instance, the lexical entry forknow
(Figure 1) states thatLS=1 if the complement clause is finite and declarative. This
causes the two S–nodes of the CoMPlement segment to share one left–peripheral
slot, i.e. F1. If the complement happens to be interrogative (as inWe know who
Dana hates), LS=0, implying that the F1 slots do not share content andwhocannot
escape from its clause. See Table 3 for theLSandRSvalues in English and Dutch.
LSandRSare set to zero by default; this applies to the root S of main clauses and
adverbial subordinate clauses.

In Figure 4, we show linearization at work on example (1), a Dutch sentence
whose clause hierarchy is depicted in Figure 3. Table 4 lists the slots selected by
various Dutch constituent types. Slot F1 of the main clause remains empty because
this clause is a yes/no rather than a Wh–question. In the main clause, the HeaD
verb goes to M1, in subordinate clauses to M6. The root S–node of the finite CoM-
Plement clause lands in E2. Within the finite complement, the CoMPlementizeR
dat lands in slot M1 while the SUBJect selects M2. The non–finite complement of
heeftopts for E1, its Direct OBJect chooses M3.
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Table 3: Size of the left– and right–peripheral shared topology areas (LSandRS) in diverse
complement constructions. The notation ”4:6” indicates that the value is an integer between
4 (minimum) and 6 (maximum).

Clause type English Dutch
Interrogative LS=0 LS=0

RS=0 RS=1
Declarative & Finite LS=1 LS=1

RS=0 RS=1
Decl. & Non–Finite, LS=3 LS=1
VP Extraposition RS=0 RS=1
Decl. & Non–Finite, LS=3 LS=4:6
Verb Raising RS=0 RS=1
Decl. & Non–Finite, n.a. LS=1:6
Third Construction RS=1

(1) Denk je dat hij de auto heeft gerepareerd?
think you that he the car has repaired
‘Do you think that he has repaired the car?’
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Figure 3: Verb frame hierarchy underlying example (1). The root S–node of the verb frame
associated withheeftand the CoMPlement S–node ofdenkhave merged as a result of uni-
fication, and so have the CMP–S ofheeftand the root S–node dominatinggerepareerd.
Left–to–right order of branches is arbitrary.

3 Typed feature unification in PG

In our descriptions of typed feature unification in PG, we adopt terminology used
in HPSG (for instance, see Sag and Wasow, 1999). Psycholinguistically motivated
details such as non–destructive unification (cf. Vosse and Kempen, 2000) are not
of interest here. Feature unification as outlined in Section 2.2 works in the usual
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Table 4: Examples of topology slot fillers in Dutch. Precedence between constituents land-
ing in the same slot is marked by “<”.

Slot Filler
F1 (Declarative main clause: SUBJect, Topic or Focus) or

(Interrogative clause: Wh–constituent) or
(Complement clause: Wh–constituent)—exactly one constituent in F1

M1 (Main clause: HeaD verb) or
(Complement clause: CoMPLementizeRdat/om)

M2 SUBJect NP (if non–Wh)< Direct OBJect (if personal pronoun)
M3 Direct< Indirect OBJect (if non–Wh)
M4 PaRTicle
M5 Non–finite CoMPlement of Verb Raiser
M6 Subordinate clause: Pre–INFinitivete< HeaD verb
E1 Non–finite Complement of Verb Raiser
E2 Non–finite Complement of VP Extraposition verb or

Finite Complement

F1 M1 M2 M3 M4 M5 M6 E1 E2

⇑
denk je •

dat hij • heeft •
↑ ⇑

de auto gerepar.

Figure 4: Linearization of example (1). The large left–peripherally shared area (LS=5) in
the lower topology causes ‘clause union’ and promotion of Direct OBJectde auto.

manner and is not addressed any further.
The linearization method outlined in Section 2.3 consists of two parts. One part

takes care of relations between clausal topologies, including lateral topology shar-
ing. The other part deals with a clause–internal matter: the mapping from clause
constituents onto the slots of the topology associated with the clause (phrase–to–
slot mapping). We discuss these parts in turn.

3.1 Topologies as typed features

In this Section, we present a rule system for lateral topology sharing which is
couched in a typed feature logic and deals with a broad variety ofĀ–movement
phenomena in English and Dutch1. For each of these languages we define 9 slot
types. They carry the labels introduced in Table 1 (e.g.,F1t, F2t, F3t, M1t, M2t,

1A–movement (e.g. Subject–to–Subject and Subject–to–Object Raising) is dealt with in PG‘s hierar-
chical component and will not be discussed here. We refer to Harbusch and Kempen (2002) for a PG
treatment ofĀ–movement in German.
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M3t, M4t, E1t, E2tfor English). Slots are attributes that take a list2 of lemmas or
constituents (e.g. HeaD–v, SUBJect–NP, CoMPlement–S) as their value. Slots are
initialized with the valueempty list(e.g., [F1t F1 〈〉]).

A slot type may impose a constraint on thecardinality (the number of mem-
bers) of the list serving as its value. Cardinality constraints are expressed as sub-
scripts of the value list. E.g., the subscript “c=1” in [F1t F1 〈〉c=1] states that the
list serving as F1’s value should contain exactly one member. Cardinality con-
straints are checked after all constituents that currently need a place have been
appended.

We define a clausal topology as a list of slot types that serves as the value of
the topology (”TPL”) feature associated with S–nodes:

S [TPL 〈F1t, F2t, F3t, M1t, M2t, M3t, M4t, E1t, E2t〉]
for English, and

S [TPL 〈F1t, M1t, M2t, M3t, M4t, M5t, M6t, E1t, E2t〉]
for Dutch. Depending on the values of sharing parametersLS andRS(see Sec-
tion 2.3), the list is divided into the left–peripheral area (comprising zero or more
slot types), the central area (which includes at least one slot for the HeaD verb),
and the right–peripheral area (possibly empty). Topology sharing is licensed ex-
clusively to the lateral areas.LSandRSare set to zero by default; this applies to
the root S of main clauses and adverbial subordinate clauses. The root S of a com-
plement clause obtains its sharing parameter values from the foot of the S–CMP–S
segment belonging to the lexical frame of its governing verb. For example, the lex-
ical entry forknowstates that the complement of this verb should be instantiated
with LS=1 if its clause type is declarative (CTYP=Decl). This causes the first slot
(F1) of the topologies associated with the S–nodes in the S–CMP–S segment of
know’s lexical frame to receive a coreference tag:

S

CMP

S

[
TPL 〈 1 F1, F2, ..., E2〉

]

[
TPL 〈 1 F1, F2, ..., E2〉
CTYP Decl

]
If, as in the example of Figure 1,know’s complement is indeed declarative, the

foot of the complement segment can successfully unify with the root of thehate
frame (the ensueing configuration is depicted in Figure 5 at the end of Section 3.2).
As a consequence, the F1 slot of the complement clause is the same object as the
F1 slot of the main clause, and any fillers will seem to have moved up one level in

2As for notation, list elements are surrounded by triangular brackets, and “〈〉” represents the empty list.
Furthermore, we assume that topological (TPL) features are always instantiated with the complete list
of empty slots, and that unification of two TPL features succeeds if their list of attributes (slot names) is
identical. In case of successful unification, the values of the corresponding slot attributes are combined
by theappendoperation, which is rendered by the symbol “◦”. The expression “L1◦ L2” represents
the list composed of the members of L1 followed by the members of L2. If L1 is the empty list, ”L1◦
L2” evaluates to L2.
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the clause hierarchy. The result is left–peripheral topology sharing of the first slot,
with promotion of its content, as depicted in Figure 2.

3.2 Phrase–to–slot mapping

How does PG set up the linearization links that enable the constituents of a clause
to access a legitimate landing site in the topology associated with that clause? To
illustrate, consider the placement of non–pronominal SUBJect and Direct OBJect
NPs, and of finite and non–finite verbs in Dutch. (The real constraints are more
complex than rendered here.) As already indicated in Table 4, the SUBJect NP3

lands in F1 or M2:

S

SUBJ

NP

[
TPL

{
〈 F1◦ 1 , M1, ..., E2〉, 〈 F1, M1, M2◦ 1 , ..., E2〉

}]

[
TPL 1

]
The tokens of coreference tag1 following symbol “◦” in slots F1 and M2

license appending the entire feature complex of the SUBJect NP to the current
content of these slots. (If F1 has remained empty since initialization, F1◦ 1 = 〈〉◦

1 = 1 .) The choice between the two landing sites will be made by the Read–out
module at a later point in time. The full Direct OBJect NP selects M3. However,
when this NP carries focus, F1 is an additional option:

S

DOBJ

NP

{[
TPL

{
〈F1◦ 1 , ...〉, 〈..., M3◦ 1 , ...〉

}]
,
[
TPL 〈...,M3◦ 1 , ...〉

]}

[
FOC +

TPL 1

]
The finite HeaD verb selects slot M1 in main clauses, M6 in subordinate

clauses:

S

HD

V

{[
CTYP MainCl

TPL 〈..., M1◦ 1 , ...〉

]
,

[
CTYP SubCl

TPL 〈...,M6◦ 1 , ...〉

]}

[
LEMMA 1

]
3Every phrasal node has its own TPL feature, with its own list of slot names. Due to space limitations,
we cannot address the ordering of constituents of NPs, PPs, etc. Furthermore, in the graphical repre-
sentation of feature matrices, feature values printed between curly brackets and separated by commas
denote alternative (disjunctive) options.
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Here, the coreference tag forces the slot choice immediately upon initializa-
tion: If the segment belongs to a main clause, the TPL feature of the root node
is initialized only with the first of the two placement alternatives; in case of a
subordinate clause, only the second alternative survives.

Suppose now that the three segments we have just seen (SUBJ, DOBJ and
HD) belong to the same main clause, and that the Direct OBJect is not focussed.
In that case, the final position of the SUBJect segment is uniquely determined:
Although it has outgoing linearization links to F1 as well as M2, only SUBJ–HD–
DOBJ order will yield a successful derivation due to the cardinality constraint of
F1 (exactly one phrase landing there). If the Direct OBJect does carry focus, it
also has two outgoing linearization links (to F1 and M3). Now there are two ways
to comply with F1’s cardinality constraint: not only SUBJ–HD–DOBJ but also its
mirror image DOBJ–HD–SUBJ (cf.Jan wil dit boek‘Jan wants this book’ andDit
boek wil Jan‘This book Jan wants’).

In order to illustrate the combined effect of topology sharing and phrase–to–
slot mapping, we return to the English example of Figure 1. Figure 5 depicts the
structure resulting under the assumption that the Direct OBJect is focussed. Notice
that the feature structure associated with the CoMPlement–S node leavesKim two
placement options. We assume the Read–out module selects one alternative on the
basis of pragmatic, discourse and other context factors. For instance, the focussed
Direct OBJect may prefer to go to slot M3 in spoken output where focussed el-
ements can be accented; in written output, fronting of focussed elements may be
preferable. In incremental generation mode, fronting of a focussed Direct OBJect
may be ruled out if Read–out already has advanced beyond slot F1.
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Figure 5: Unification–based lateral topology sharing and phrase-to-slot mapping applied to
the example of Figure 1. Empty slots in the TPL features are not shown.
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4 Comparison with other grammar formalisms

In the introductory Section we highlighted two general properties of human sen-
tence production and discussed the requirements they impose on the design of a
grammar formalism that claims psychological plausibility. Actually, grammar for-
malisms of linguistic origin rarely deal with psychological (performance) issues
in any detail, concentrating on the description and explanation of linguistic com-
petence. However, considerations of theoretical parsimony justify assessing the
extent to which existing linguistic grammar formalisms in fact meet psychological
demands. For, if one or more formalisms would receive a positive evaluation, no
additional formalism would be needed. In this Section we therefore apply the per-
formance criteria of late linearization and incrementality to mainstream linguistic
models of grammar.

Many formalisms employ phrase–structure rules, whether or not supplemented
by transformations. Because these rules conflate hierarchical and linear struc-
ture, they are at variance with the requirement of late linearization. Converting
phrase–structure rules into ID/LP format in order to separate hierarchal (Immedi-
ate Dominance, ID) and linear (Linear Precence, LP) aspects is an important step
forward, unless other properties of the grammar precludelate assignment of lin-
ear order. Reliance on transformations that presuppose and modify left–to–right
order of phrases is one such property. Non–transformational grammars, in par-
ticular Categorial Grammars (CG), GPSG/HPSG, and Tree Adjoinung Grammars
(TAG), are therefore more likely candidates to evolve into psychological models
of grammar.

Non-transformational grammars have the additional advantage of being more
easily amenable to incremental production, at least insofar as transformations pre-
suppose syntactic trees that dominatecompletesentences. Incremental syntactic
generators have indeed been developed on the basis of HPSG (e.g., Neumann and
Finkler, 1990 and Abbet al., 1993) and TAG (e.g., Harbuschet al., 1991).

TAG, HPSG and CG have also been advocated as meeting important psycho-
logical requirements (e.g., Ferreira, 2000, on TAG; Sag and Wasow, 1999, Chapter
9 on HPSG as a “Realistic Grammar”; Steedman, 2000, on CG). Kathol (2000)
developed an HPSG variant called “Linear Syntax”, which comes close to PG (al-
though Kathol does not make any psychological claims). It has separate separate
hierarchical and linearization components, the latter based on topological fields.

However, although these models can generate sentences incrementally, they
lack provisions against premature utterance release. Kathol’s linearization method
is exlusively based on linear precedence rules, i.e. on relative positions (o.c., p.
76–80). The TAG–based incremental generator developed by Harbuschet al. does
include provisions against premature utterance release but in the form of a special
control mechanism built around the grammar. In PG, such provisions are an in-
tegral part of the formalism: The topologies provide placeholders for all types of
constituents looking for a landing site; slots serving as placeholder for obligatory
constituents carry a cardinality tag so that the Read–out module cannot skip them
if the obligatory filler is missing.
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We conclude that PG complies better with the two general sentence production
constraints addressed in this paper than any of the formalisms of linguistic origin.

5 Discussion

Elsewhere, we have presented detailed accounts of complex and puzzling linear
order phenomena in Dutch and German, in particular verb clustering in Dutch
and German, and scrambling in German (see two forthcoming papers by Kempen
and Harbusch). We have shown, furthermore, that striking contrasts betweenĀ–
movement phenomena in English, Dutch and German reduce to different settings
of a few numerical parameters that control lateral topology sharing (Harbusch and
Kempen, 2002). Space limitations prevent us from seriously discussing PG’s ad-
ditional psycholinguistic virtues; but see Vosse and Kempen (2000) for a dynamic
model of human syntactic parsing built around a very similar formalism.

As already pointed out above, the choice between ordering options left open
by PG’s hierarchical component is made by the Read–out module. So far we have
assumed that this component processes the slots of a topology strictly from left to
right. However, it seems reasonable to endow it with a limited amount of preview,
thereby enabling it to base its sequencing decisions on the contents of slots further
down the topology. For instance, consider the placement of particles in English,
which according to Table 2 are free to land in M1 (immediately after the HeaD
verb) or in M4 (after the Direct Object). This accounts for the acceptability of
both She called up her boyfriendandShe called her boyfriend up. However, if
the Direct OBJect is an unstressed personal pronoun, it should precede the particle
(*She called up him). We therefore suggest to delegate to the Read–out module
linearization decisions that depend on constituent length/weight.

We realize that the division of linearization tasks between the hierarchical
component and the Read–out module is far from clear, and that further empir-
ical (psycho–)linguistic data will rule on this matter. The important points to be
stressed here are, first, that PG’s hierarchical component does not output linearized
structures and, second, that the hierarchical and Read–out components are in a
master–slave relationship. At all times, the latter should operate within the space
of linearization options delineated by the former.
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