

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

INCREMENTAL SENTENCE GENERATION: IMPLICATIONS FOR
 THE STRUCTURE OF A SYNTACTIC PROCESSOR

Gerard Kempen & Edward Hoenkamp

Department of Psychology

 University of Nijmegen, The Netherlands

Human speakers often produce sentences
incrementally. They can start speaking having in
mind only a fragmentary idea of what they want
to say, and while saying this they refine the
contents underlying subsequent parts of the
utterance. This capability imposes a number of
constraints on the design of a syntactic
processor. This paper explores these
constraints and evaluates some recent
computational sentence generators from the
perspective of incremental production.

An important characteristic of spontaneous speech is that overt
pronunciation of a sentence can be initiated before the speaker has
completely worked out the conceptual content he is going to express in
that sentence. Apparently, the speaker is able to build up a syn-
tactically coherent utterance out of a series of syntactic fragments
each rendering a new part of the conceptual content. This incremental,
piecemeal mode of sentence generation imposes some important
constraints on the design of possible mechanisms for building syntactic
structures.

CONSTRAINTS ON INCREMENTAL SYNTACTIC PROCESSORS

1. Lexically driven syntactic processing. The first constraint derives
from the fact that it is conceptual structures which serve as input to
the tree formation process. A good strategy for translating these
meanings into language begins by looking up words covering them
("lexicalization"). Subsequently, the processor attempts to build a
syntactic framework which accommodates all words while respecting their
syntactic properties (e.g. word class). In case of success, the result
is a syntactic tree with lexical items as terminal nodes. In case of
failure, one or more words are replaced by other lexical material which
expresses the same meaning but whose syntactic properties are more
favorable. The point we want to make here is that it is the syntactic
properties and peculiarities of lexical items which guide the tree
formation process.

In short, syntactic processing is lexically driven. This feature requires
special rules not found in current linguistic grammars where it is
common practice to set up a linguistic framework (e.g., by applying
phrase-structure rules) without reference to syntactic properties of
lexical items [1]. Adopting this practice would presuppose that syntactic
trees are directly computable from the shape of conceptual structures,
that is, without the intermediation of lexical items. This supposition
is valid only for conceptual structures which are virtually isomorphic
with syntactic trees. Most probably, such an isomorphism does not hold
for the structures delivered by the conceptualization system in human
speakers.

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

2. Hierarchy and order of constituents computed by different components.
The second constraint hinges upon the independence between the order
of conceptual fragments coming in and the order of the corresponding
syntactic fragments. With the possible exception of languages with
extremely flexible word order, grammar rules do not always permit a new
syntactic fragment to be simply appended to the right-hand side of the
current tree. Other spatial arrangements of the new fragment with
respect to the current syntactic tree are possible, depending on the
word order rules in the grammar. Sometimes these rules even ask for
the presence of other elements between the current tree and a newly
computed syntactic fragment. A clear example is provided by the position
of verbs in main clauses of Dutch and German. Subject noun phrases and
adverbial phrases cannot follow each other at the beginning of a main
clause. The finite main verb or auxiliary is always in between: either
NP-V-AP or AP-V-NP but not NP-AP-V or AP-NP-V. Grammars which use some
version of the traditional phrase-structure rules do not keep word
order apart from phrase membership (more precisely, constituent
hierarchy from constituent order). For example, consider the following
rules which express the above word order contingencies:

S ----> NP+V+AP
S ----> AP+V+NP

Now suppose that the syntactic processor is working on a conceptual
fragment which lexicalizes into a verb, and applies the first rule which
says, among other things, that the verb needs an NP at its left-hand
side. In the meantime a new conceptual fragment has come in which
receives the syntactic shape of an AP. The first rule does have an AP
slot, but not to the left of the verb. This implies the syntactic
processor has to wait for a third conceptual fragment which can be worded
in the form of an NP. At that point the syntactic processor can deliver
its first output: an NP-V-AP utterance. The waiting time, that is, the
period between onset of (conceptual) input and onset of (syntactic)
output, would have been shorter, had the syntactic processor picked the
second phrase-structure rule. Then, output could already have begun after
the second conceptual fragment ("AP-V...") and closed off grammatically
with "...NP". Because the order of conceptual fragments is unknown in
advance, the syntactic processor can never be sure of having made the
best choice between rules. This problem does not arise in a rule system
which allows word order to be computed independently of phrase
membership. We conclude, therefore, that in an incremental syntactic
processor it is desirable to have separate components for tree (or
rather "mobile") formation and for word order.

3. Explicit computation of grammatical (functional) relationships.
Traditional phrase-structure rules allow grammatical relationships
(subject, direct object, nominal modifier, etc.) to be inferred from
configurations of categorial nodes in the syntactic tree. This is not
true of tree formation rules which leave left-to-right order of
constituents undefined. If such a system contained a rule

VP ----> V-NP-NP

it would be impossible to determine which of the NPs served the function
of direct object. Functional information of this kind is needed by the
word order component (or, in languages with free word order, by the
morphological case component).

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

An additional motivation for direct computation of functional syntactic
relationships is provided by the lexicalization process. Constraint #1
makes the prescription that it is choice of lexical items which guide the
formation of syntactic trees rather than vice versa. Many lexical items
require a specific syntactic environment, a typical example being verbs
like give which cause the formation a VP with two NPs, for direct and
indirect object respectively. In conjunction with customary phrase-
structure rules, this property of give could be expressed in terms of a
desired configuration of categorial nodes, e.g. (VP(NP___)(NP___)). This
option is not available in a tree formation system which generates
"mobiles". Here, the lexical entry for give should explicitly reference
direct and indirect objects as desired constituents.

4. Simultaneous construction of parallel branches of syntactic trees.
Constraint #2 entails a work scheduling problem: if more than one branch
is to descend from a given node, in what order should they be constructed
by the syntactic processor? The standard solution, i.e. to develop
constituents in their order of appearance in surface structure, is no
longer applicable since left-to-right order is undefined at this stage
[2]. In a lexically driven syntactic processor, the most efficient solution
is a priority scheme based on the order of arrival of lexical items (of.
Constraint #1). This order, in turn, is the combined result of the order
in which conceptual fragments become available and the manner of operation
of the lexiealization process, and need not corresponds at all to their
surface structure order. For example, the verb-second rule of German and
Dutch applies irrespective of whether the verb comes into play earlier or
later than other lexical materials of the main clause.

When computing a branch connecting a lexical item to the current syntactic
tree, the processor has to take into account the functional relations this
item maintains with other lexical items put forward by the lexiealization
process (cf. Constraint #3). For example, the noun designated as subject
of a verb will receive a different place in the syntactic tree than the
object noun. For the rest, there are no cross-branch computational
dependencies forcing a systematic order upon the construction of branches
of syntactic trees. This statement is supported by the success most
grammar types obtain by having context-free rules generate deep
structure trees (and sometimes even surface structure trees). This
implies we can trust the above priority scheme (simply follow order of
arrival of lexical items) even though it does not bring any syntactic
expertise to bear. Now suppose the syntactic processor is capable of a
certain amount of parallel processing. We are then permitted to assume
that lexical items are attached to the tree simultaneously (again
respecting their order of arrival) rather than sequentially. As a matter
of fact, this is what human speakers seem to do, as witnessed by
certain speech error phenomena (Garrett, 1975) and by reaction times to
initiate sentences (Kempen & Huijbers, in press).

5. Operations on syntactic trees subject to locality constraints. In an
incremental syntactic processor, the application of tree formation and
word order rules will often yield "narrow" trees dominating small
sentence fragments. Now suppose that some trees have to undergo certain
obligatory operations (e.g., transformations to be executed or anaphoric
relationships to be established) and that such operations are
triggered as soon as the tree matches a specific pattern. One can
imagine "horizontal" (left-to-right) trigger patterns spanning a
number of parallel branches, "vertical" (top-down) patterns
specifying some configuration of dominating and dominated nodes on one
branch, or "mixed" patterns. The pattern that triggers passivization
is an example of a horizontal one involving several parallel branches
(object NP, passive marker, main verb, and optional subject NP). Wh-

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

fronting and Raising transformations are triggered by vertical or
nearly vertical patterns. Incremental production favors vertical
trigger patterns because they are more easily satisfied by narrow
(partial) syntactic trees corresponding to fragmentary conceptual inputs.
Horizontal patterns can only be matched by "wider" syntactic trees
which correspond to more elaborate conceptual structures. This latter
requirement, however, runs counter to the very idea of incremental
sentence production.

The interesting point is that conditions on transformations and other
linguistic rules can usually be expressed in terms of (nearly) vertical
node configurations. A clear example is provided by Koster's (1978)
Locality Principles where a central role is played by dominance and
command relationships between nodes. In the context of a computer
implementation of our Procedural Grammar (Kempen & Hoenkamp, 1981), which
was specially designed for the purpose of incremental production, we
have attempted to make more precise the parallelism between vertical
trigger patterns and locality constraints on transformations (see
Hoenkamp, 1982, for a more formal approach).

6. Lexical transformations. By constructing a partial syntactic tree
the syntactic processor commits itself to a limited range of
continuation alternatives. The lexicalization process should be sen-
sitive to such syntactic commitments by making available lexical
materials which are compatible with what has been said in earlier
parts of the sentence. Take the example of a concept which, after
having been expressed as a subject NP, turns out to be the patient of an
action, as specified in a subsequent conceptual fragment. A typical
lexical realization of the action might be an active verb which
prescribes the patient to be rendered as the object NP. However, this
would entail incompatibility with the current syntactic tree. The
solution is provided by a lexical passive transformation that, among
other things, alters the pairings of conceptual cases with syntactic
functions (causing patient to go with subject). The transformed lexical
item is then successfully attached to the current tree. By attuning
lexical items to the exigencies of incomplete syntactic trees, the
lexicalization component greatly enhances the left-to-right planning
capabilities of the syntactic processor [3).

7. Sentence production in two stages. In the foregoing we have not yet
touched upon the issue of where and when inflectional computations are
carried out. The obvious placement of an inflectional component --
somewhere at the end of the tree formation process -- leads to an
interesting problem. In many languages, including English, German and
Dutch, clitics (monosyllabic function words) are optionally contracted
with preceding lexical items. Some examples are John is ill --> John's
ill; will not --> won't; (Ger.) unter dem Turm --> unterm Turm ("under
the tower" ; von dem --> vom ("of the .."). Clitic contraction implies
merging the lexical items of two adjacent branches of a syntactic tree
into a single word.

In the context of Constraint #4 we have seen that the most efficient
order of constructing branches of a syntactic tree simply copies the
order of arrival of lexical items. This, in turn, implies that clitic
contraction cannot be performed by the tree formation components
(including the word order component): there is always a chance that a
later lexical item gets hold of a place in between the clitic and its
predecessor. For instance, John be ill might be expanded into John will be
ill, or von dem into von all dem ("of all the ..."). Therefore, clitic
contraction must take place after tree formation, that is, after the

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

moment the syntactic processor decides that the current tree (possibly an
incomplete one) is a suitable linguistic formulation of the conceptual
input received so far. It follows there is a subsequent stage of
processing which takes care of clitic contraction, and maybe of other
aspects of the morphological shape of words. This latter addition is
plausible from the point of view of efficiency. It does not make sense
to have the tree formation components engage in detailed inflectional
computations if some of these are undone later (namely, the
computations that are superseded by clitic contraction).

It is a remarkable fact that speech error data have given rise to a
two-stage sentence production model with a similar division of labor
between stages: roughly, syntactic tree formation versus inflectional
morphology (Garrett, 1975; Kempen & Huijbers, in press). These data also
suggest that the second processing stage deals with the terminal nodes of
a (possibly incomplete) syntactic tree in their left-toright order.

INCREMENTAL SENTENCE PRODUCTION IN MODELS OF THE SPEAKER

It will come as no surprise to the reader that the only computational
model of sentence production which, in the authors opinion, satisfies
all or most of the above constraints, is the one developed by the authors
themselves (Kempen & Hoenkamp, 1981). We know of one other
computational sentence generator whose design was explicitly concerned
with incremental production. It was written by McDonald (1980, 1982)
and embodies a broad range of syntactic constructions. However, this
model fails to distinguish hierarchical from word order rules and,
consequently, violates Constraint #3. We cannot judge whether removal
of this shortcoming will necessitate drastic changes to the rest of the
program.

The type of grammar embodied by the Kempen & Hoenkamp model (Pro-
cedural Grammar) is similar to Lexical Functional Grammar (Kaplan &
Bresnan, 1982; see also Bresnan, 1981). The main difference concerns the
attitude towards transformations. In Lexical Functional Grammar, surface
trees are base-generated and no transformational component is needed. If
Kaplan & Bresnan motivate their rejection of a transformational component
on psychological grounds [4], we disagree. Neither incremental production
nor any other known fact about human sentence production processes
argues for complete banishment of transformational operations on
syntactic trees.

Procedural Grammar is unique in its ability to deal effectively with
conceptual inputs which may change on line. A conceptual structure
which is altered after it has been expressed linguistically causes the
processor to backtrack and to make "repairs".

Acknowledgements. The work reported in this paper was supported by a
grant from ZWO, the Netherlands Organization for Pure Scientific
Research. We are indebted to Patrick Hudson for his valuable comments.

NOTES

[1]Categorial grammars form an exception here. However, a processor
based on this grammar type violates Constraints #2 and #3:
categorial rules presuppose left-to-right order of lexical items, and
make no use of functional syntactic relations.

[2]This solution is the one that has been adopted of old, from Yngve
(1960), via ATN-based generators (e.g. Simmons & Slocum, 1972;
Anderson, 1976) to McDonald (1980).

Kempen, Gerard & Hoenkamp, Eduard (1982). Incremental sentence generation: implications for the structure of a syntactic
processor. In: Horecky, J. (Ed.), Proceedings of the Ninth International Conference on Computational Linguistics, Prague,
July 1982. Amsterdam: North-Holland. [Pages 151-156]

[3]Lexical transformations may involve other types of alterations as
well, e.g., derivational morphological operations and insertion of
function words. Actually, the addition of function words and
inflections (or, rather, inflectional presciptions) is another
general possibility for the lexicalization component to accommodate a
lexical item to properties of the current syntactic tree.
(Inflectional prescriptions are executed during a subsequent pro-
cessing stage; see Constraint #7.)

[4]Bock (1982, p. 28) opts for Gazdar's (1981) context-free grammars
because they are "much more compatible with on-line processing
models than transformational grammars".

REFERENCES

Anderson, J. Language, memory, and thought. Hillsdale, N.J.: Erlbaum,

1976.
Bock, J.K. Toward a cognitive psychology of syntax: information pro-

cessing contributions to sentence formulation. Psychological
Review, 1982, 1, 1-47.

Bresnan, J. An approach to Universal Grammar and the mental representation
of language. Cognition, 1981, 10, 39-52.

Garrett, M. The analysis of sentence production. In: G. Bower
(ed.), The psychology of learning and motivation, Vol. 9. New
York: Academic Press, 1975.

Gazdar, G. Unbounded dependencies and coordinate structure. Linguistic
Inquiry, 1981, 12, 155-184.

Hoenkamp, E. Aspecten van een computermodel van de spreker. Ph.D.
Dissertation, University of Nijmegen, 1982 (in prep.).

Kaplan, R.M. & Bresnan, J. Lexical-Functional Grammar: a formal system
for grammatical representation. To appear in: Bresnan, J. (ed.),
The mental representation of grammatical relations. Cambridge,
Mass.: MIT Press, 1982.

Kempen, G. & Hoenkamp, E. A procedural grammar for sentence production.
Report 81 FU 03. Department of Psychology, University of Nijmegen,
1981.

Kempen, G. & Huijbers, P. The lexicalization process in sentence
production and naming: indirect election of words. Cognition, in
press.

Koster, J. Locality principles in syntax. Dordrecht: Foris, 1978.
McDonald, D. Natural language production as a process of decisionmaking

under constraints. Ph.D. Dissertation, MIT, 1980.
McDonald, D. Natural language generation as a computational problem: an

introduction. To appear in: Brady (ed.), Computational theories of
discourse. Cambridge, Mass.: MIT, 1982.

Simmons, R. & Slocum, J. Generating English discourse from semantic
networks. Communications of the ACM, 1972, 15, 891-905.

Yngve, V. A model and a hypothesis for language structure. Proc. Amer.
Phil. Soc., 1960, 104, 444-466.

